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ABSTRACT Sleep is a composite of physiological and behavioral processes that undergo substantial
changes during and after pregnancy. These changes might lead to sleep disorders and adverse pregnancy
outcomes. Several studies have investigated this issue; however, they were restricted to subjective mea-
surements or short-term actigraphy methods. This is insufficient for a longitudinal maternal sleep quality
evaluation. A longitudinal study a) requires a long-term data collection approach to acquire data from
everyday routines of mothers and b) demands a sleep quality assessment method exploiting a large volume
of multivariate data to assess sleep adaptations and overall sleep quality. In this paper, we present an Internet-
of-Things based long-term monitoring system to perform an objective sleep quality assessment. We conduct
longitudinal monitoring where 20 pregnant mothers are remotely monitored for six months of pregnancy
and one month postpartum. To evaluate sleep quality adaptations, we a) extract several sleep attributes and
study their variations during the monitoring and b) propose a semi-supervised machine learning approach
to create a personalized sleep model for each subject. The model provides an abnormality score which
allows an explicit representation of the sleep quality in a clinical routine, reflecting possible sleep quality
degradation with respect to her own data. Sleep data of 13 participants (out of 20) are included in our
analysis, as their data are adequate for the study, including 172.15 ± 33.29 days of sleep data per person.
Our fine-grained objective measurements indicate the sleep duration and sleep efficiency are deteriorated
in pregnancy and notably in postpartum. In comparison to the mid of the second trimester, the sleep model
indicates the increase of sleep abnormality at the end of pregnancy (2.87 times) and postpartum (5.62 times).
We also show the model enables individualized and effective care for sleep disturbances during pregnancy,
as compared to a baseline method.

INDEX TERMS Anomaly Detection, Internet of Things, Longitudinal Study, Maternity Care, Sleep
Monitoring, Sleep Quality Assessment

I. INTRODUCTION

SEVERAL physical, physiological, and hormonal adapta-
tions occur during pregnancy to accommodate the devel-

oping fetus and to prepare the mother for the delivery [1],
[2]. Such variations in the maternal body alter sleep patterns
of pregnant women in many ways. In this regard, sleep
disturbances are particularly prevalent throughout the preg-
nancy, including various disorders to maintaining sleep (e.g.,
insomnia), sleep deprivation, and restless legs syndrome [3]–

[6]. Moreover, sleep patterns of pregnant women might be
altered in postpartum months, as they experience new life
situations after labor [7].

Studies show that sleep disturbances negatively impact
maternal and child health during and after pregnancy [8].
Sleep problems are associated with a high likelihood of poor
obstetric outcomes and different diseases such as gestational
diabetes, preeclampsia, and stress overload [9]–[11]. Also,
they lead to increased risk of preterm birth, intrauterine
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growth restriction, and unplanned Caesarean deliveries [12],
[13]. Moreover, different studies discussed the correlation
between sleep disturbances and postpartum diseases and
complications such as depression and damage to the mother-
infant relationship [12], [14]. Thus, screening, monitoring,
and assessment of maternal sleep quality are essential during
pregnancy to alleviate sleep disturbances and prevent its
potential complications [12], [15], [16].

Sleep quality is a complex concept that is traditionally
evaluated via qualitative attributes (i.e., subjective measure-
ments) and more recently via quantitative attributes (i.e.,
objective measurements) [17]. Subjective techniques deter-
mine perceived sleep quality by inquiring the individuals
about their sleep experiences such as sleep duration and
disturbances. These techniques are often performed via self-
report questionnaires such as the Pittsburgh Sleep Quality
Index (PSQI) [18] and Berlin Questionnaire [19]. Those are
widely used in sleep quality evaluation of different groups
of people as they are relatively straightforward and easy to
implement for longitudinal studies. Similar subjective tech-
niques have also been utilized for pregnant women to reveal
the impact of pregnancy on maternal sleep [5], [8], [15],
[16], [20]–[22]. However, such subjective methods can be
inaccurate and poorly reflect sleep quality level, as the data
collection is mostly limited to scheduled interviews, Internet-
based surveys, or self-report questionnaires. The shortcom-
ings and poor performance of such methods have been widely
discussed in several studies investigating the validity of the
subjective sleep quality assessment methods [17], [23]–[25].

Alternatively, objective techniques measure the user’s
physical and health conditions and translate the results into
sleep attributes such as sleep efficiency and sleep stages
for further assessment. Polysomnography (PSG) is a con-
ventional test in this regard, where several bio-signals are
acquired for sleep analysis [26], [27]. The PSG, as the gold
standard of the sleep assessment, has been exploited for
sleep disturbances monitoring in pregnancy [4]. However,
it is bounded to one or a limited number of nights due to
its data acquisition limits. Actigraphy is another objective
method that examines sleep quality by monitoring human
rest/activity cycles [28]. Data acquisition in actigraphy is
more convenient and non-invasive for users, as it is per-
formed via a small and light-weight wearable device placed
on the user’s wrist or ankle. Standalone (i.e., without net-
work connectivity and real-time remote access) actigraphy
monitors have been deployed for offline and short-time sleep
monitoring, such as the works presented in [29]–[32] where
maternal sleep is monitored for up to 14 days. However, the
constraints in local storage and processing have hindered the
utilization of this technology for longitudinal sleep quality
monitoring.

Longitudinal objective sleep monitoring necessitates a
long-term data collection to acquire data from everyday
routines of participants 24/7. We believe recent advance-
ments in Internet-of-Things (IoT) technologies provide an
unprecedented opportunity to enable such continuous health

monitoring. IoT is an emerging network of interrelated ob-
jects that tailors a distinct set of paradigms such as wearable
electronics, communication infrastructure, and data analytics
to deliver personalized services to the end-users [33], [34].
However, it should be noted that an IoT-based sleep monitor-
ing system, despite being a powerful tool, generates a large
volume of multivariate data which dramatically increases
over time. Such big data [35], while being a rich source
of information, call for tailored and intelligent data analytic
techniques and models.

Conventional techniques assess the sleep quality only from
a single perspective by separately extracting and analyzing
each sleep attribute (e.g., sleep duration) from a pool of
sleep-related data. Data in a high-dimensional space require
a more intelligent amalgamation method to transform all
sleep attributes into a single overall sleep quality score, in
a way that the contribution of each attribute is automatically
considered in the final score. This allows a straightforward
representation of the sleep quality in a clinical routine and
reflecting possible sleep quality degradation of an individual
with respect to her own life situation and health condition.
We believe that such a method is particularly essential for
maternal sleep quality assessment and individualized care
approach, as a mother’s physical and mental states undergo a
process of change throughout the course of pregnancy and
postpartum, which necessitates an explicit indicator of the
mother’s sleep changes during this period.

In this paper, we present an IoT-based long-term monitor-
ing system that employs a wrist-worn device to assess the
sleep of pregnant women during pregnancy and postpartum
thoroughly. Our monitoring system is deployed on a real
human subject trial where 20 pregnant women are remotely
and continuously monitored for six months of pregnancy and
one month postpartum. We first study sleep quality changes
in this monitoring, leveraging several objective attributes. We
then propose an anomaly detection approach to construct
a personalized sleep model for each individual using the
sleep data from the beginning of the monitoring process. We
measure the sleep adaptations of the rest of the pregnancy
and postpartum, using the personalized model to investigate
the maternal sleep quality from a different perspective. In
summary, the contribution of this paper is manifold:

i) Presenting an IoT-based long-term monitoring system
to perform objective sleep quality assessment during
pregnancy and postpartum.

ii) Conducting a longitudinal study on a human subject trial
on maternal sleep.

iii) Observing the degradation of sleep quality during preg-
nancy and postpartum separately for a set of fine-grained
quantitative sleep attributes.

iv) Proposing a neural network-based approach to investi-
gate maternal sleep quality adaptations in a comprehen-
sive and personalized way.

The rest of the paper is organized as follows. We outline
the background and related work of this research in Sec-
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tion II. Section III describes the study design. In Section IV,
we present our sleep analysis approaches. Results and find-
ings are presented in Section V. In Section VI, we discuss our
findings, evaluate the model, and represent limitations and
future directions of this study. Finally, Section VII concludes
the paper.

II. BACKGROUND AND RELATED WORK
In this section, we first outline the background of maternal
health and sleep monitoring. Then, we present state-of-the-
art anomaly detection techniques as appropriate tools to
create models for abnormality detection.

A. MATERNAL HEALTH AND SLEEP MONITORING
Maternal health can be monitored during pregnancy to ensure
the well-being of both the mother and her future child.
Pregnancy is a window to a woman’s future health [36],
and thus women are also interested in monitoring their
health during pregnancy. Furthermore, using systematic and
regular monitoring, several abnormalities and complications
regarding pregnancy could be detected early and be treated
accordingly. Maternal health monitoring, however, varies
in different countries, and only half of women receive the
recommended amount of care during their pregnancy [37].
Therefore, there is a need to develop new solutions that can
widen the availability of maternal health monitoring for all
pregnant women.

Sleep as an important part of overall maternal health
requires particular attention. Multiple hormonal and physi-
ological changes during pregnancy might contribute to sleep
problems. For example, nausea, vomiting, or anxiety might
cause sleep disturbances in the first trimester of pregnancy.
As pregnancy progresses, the frequency and duration of
sleep disturbances increase. Frequent urination, backache,
leg cramps, and anxiety about delivery are common reasons
for compromised sleep in the third trimester.

Sleep disturbances are common during pregnancy and
are the risk factors of adverse pregnancy outcomes such as
prenatal depression, gestational diabetes, and preterm birth
[11], [16], [38], [39]. Also, many women suffer from acute
sleep deprivation during the postpartum period, and compro-
mised sleep may continue even several months after birth
[39]. This problem might lead to diseases such as maternal
fatigue and postpartum depression [14]. It is possible to
use nonpharmacological strategies such as regular physical
activity, controlling weight gain, and relaxation, to alleviate
sleep disorders during pregnancy. Medication should be used
only in severe cases to avoid possible teratogenic effects [40].
Sleep quality assessment is the first step for managing sleep
disturbances and disorders. It gives an accurate picture of
sleep changes and assists to early-detect sleep problems [41].
In particular, systematic and personalized sleep assessment
enables the provision of right strategies to manage sleep
disturbances and disorders of each woman.

Different methods have been proposed in the literature
to investigate sleep problems. The duration, as well as the

quality of sleep during pregnancy, has usually been measured
using questionnaires [16], [42], [43]. The Pittsburgh Sleep
Quality Index (PSQI) is the gold standard for subjective sleep
quality assessment, in which individuals are asked to an-
swer a self-report questionnaire [18]. The tool discriminates
“good” sleep quality from “bad” leveraging seven compo-
nent scores such as sleep latency, habitual sleep efficiency,
and use of sleeping medication. Such subjective methods
are not accurate; pregnant women have both over and un-
derestimated their sleep duration compared with objective
measurements [44].

Polysomnography (PSG) is the gold standard of sleep
monitoring. The method typically employs various wearable
sensors to capture several bio-signals including electroen-
cephalogram (EEG), electromyogram (EMG), electrooculo-
gram (EOG), and electrocardiogram (ECG), providing differ-
ent sleep indices such as sleep efficiency, sleep onset latency,
and sleep stages [4], [26], [45]. However, the use of the
PSG is limited to sleep laboratories and clinical settings due
to the burdensome implementation of its multisensor data
acquisition. Therefore, the method was mostly performed
in a short period of time in sleep studies. For example, an
overnight lab-based PSG was implemented along with the
Berlin questionnaire, targeting obstructive sleep apnea [19].
Similarly, in the maternity care, sleep disturbance was inves-
tigated via a short-term PSG-based data collection, i.e., two
consecutive nights in each trimester, and in first and third
postpartum months [4].

Actigraphy is another low-cost alternative for monitor-
ing sleep and sleep-wake behavior of an individual [28].
The Sleep actigraphy typically includes an actigraph de-
vice equipped with a 3-axis MEMS accelerometer sensor,
a low-performance processor and a limited memory. The
acceleration data are locally processed, and sleep parame-
ters are extracted. The actigraphy method is easy-to-use in
out-of-hospital settings in contrast to the PSG. However, it
is bounded to offline services. Objective sleep monitoring
has been fulfilled in different maternal studies using short-
term actigraphy methods [30], [46]. For example, Lee and
Gay [29] investigated the association between sleep distur-
bance in late pregnancy with labor using an actigraphy for 2
days along with subjective measurements in the ninth month
of pregnancy; a seven-day actigraphy and PSQI methods
were employed for maternal sleep disturbance [31]; and
Haney et al. [32] assess sleep in early pregnancy exploiting
a 14-day actigraphy method, questionnaires, and blood pres-
sure measurements.

Contact-free sensors have also been proposed for sleep
monitoring. Some examples are visual-based sensors [47],
mattress-based sensors [48], and smartphone sensors [49].
They were mostly designed to acquire sleep patterns as well
as vital signs such as heart rate and respiration rate. The use
of such systems has been limited in real-world applications
because of restrictions in data collection and high cost. In one
study, the maternal body movements of 2 pregnant women
were monitored for a couple of weeks, using a piezoelectric
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sensor board placed beneath their mattress [50].

B. ANOMALY DETECTION
Anomaly detection, also known as outlier detection, is the
problem of finding patterns or events in data that differ from
the expected behavior [51]. Anomaly detection has been
applied in many fields including fraud detection, healthcare,
and intrusion detection in cybersecurity [52]. An anomaly
detection technique applied to a problem depends on a variety
of factors including the availability of labeled data, the nature
of the data, the type of anomalies to be detected, the output
of the method, and in some cases the field of study.

The type of anomalies in a dataset can be divided into
three major categories [51]. First, point anomalies refer to
data instances that are anomalous with respect to the rest
of the data (i.e., normal data). Second, contextual anomalies
are data instances that are anomalous in a certain context.
For example, 150 heart beats per minute would be normal
during exercise although it is anomalous if the user is sleep-
ing. Third, collective anomalies refer to a group of related
data instances which together are considered anomalous. For
instance, recording a couple of high heart rate events in a day
would be detected as anomalous (e.g., health deterioration) in
a health application. Moreover, datasets can be modified to
change the anomaly type; e.g., point anomalies and collec-
tive anomalies can become contextual anomalies if we add
context information to the dataset.

The choice of a specific anomaly detection method –
supervised, semi-supervised, and unsupervised – is greatly
dependent on the type of data involved. The data can gen-
erally be divided into binary, categorical, or continuous.
However, it can be a combination of these categories in
some cases. In addition, the output of the method can be
either binary (i.e., normal or anomalous) or continuous in the
form of an anomaly score which represents the degree of the
anomaly [51]. The availability of labeled data is a common
challenge in anomaly detection, as anomalies might not occur
frequently. Moreover, labeling of a dataset by an expert is
time-consuming and expensive. The extent of the availability
of a labeled dataset determines which method is used.

Supervised anomaly detection methods rely on data with
labels for both the normal and anomalous classes. They
construct a predictive model to differentiate normal and
abnormal behavior. However, unbalanced distribution of data
should be considered in such models, as in practice anoma-
lous data do not occur as often as normal data. Examples of
such methods include Neural Networks methods [53], Sup-
port Vector Machine (SVM) [54], and Rule-based approaches
(e.g. Decision trees) [55].

Semi-supervised anomaly detection methods deploy semi-
supervised learning (also known as one-class learning meth-
ods) that only consider normal data to train their models.
When the model is created to understand normal behavior, it
can then distinguish between normal and anomalous classes.
These methods are commonly applied because of unavail-
ability or shortage of anomalous data in many applications.

Moreover, no data labeling is required, as all the input
data are normal. Some examples of these methods are Sta-
tistical techniques [56], one-class Support Vector Machine
(SVM) [57], and Neural Networks methods [58]–[60].

In contrast, unsupervised anomaly detection methods de-
ploy unsupervised learning techniques that require no train-
ing data, assuming the normal data occur more often than
anomalous data. Unfortunately, applying data that do not fit
this assumption would lead to a high false positive rate. Clus-
tering techniques [61] and Nearest Neighbor techniques [62]
are examples of unsupervised or semi-supervised techniques,
which rely on the assumption that normal data remain in a
cluster or dense neighborhood while anomalous data do not.
They often require large training data for the normal classes.

III. STUDY DESIGN
This paper proposes an IoT-based monitoring system
equipped with a semi-supervised machine learning approach,
by which pregnant women can be monitored remotely, con-
tinuously, and long-term. Also, the proposed system enables
personalized sleep analysis during pregnancy and the post-
partum, providing effective care for maternal sleep distur-
bances. We present this system for a real human subject trial
on material sleep, where pregnant women are monitored in
six months of pregnancy and one month postpartum. In this
section, we introduce the IoT-based monitoring system and
provide details about our implementation setup, the partici-
pants, and recruitment.

A. IOT-BASED MONITORING SYSTEM
An IoT-based system is introduced to continuously monitor
the pregnant women. As shown in Figure 1, the architecture
of the proposed system is partitioned into three main tiers.
First, the sensor network performs data collection in IoT-
based systems, located in the vicinity of the end-users. It
acquires pregnancy- and sleep- related data from the end-
users constantly. Thanks to the advances in embedded and
wearable technologies, various lightweight energy-efficient
wearable devices such as smartwatches, fitness trackers and
Holter monitors are nowadays available for this tier.

The gateway, as the second tier, is a bridge between the
sensor network and the Internet (i.e., cloud servers). The
gateway is responsible for data transmission and protocol
conversion. Smartphones and tablets as widespread mobile
computing devices can be employed in this layer. They
provide data transmission in both directions, transmitting
collected health data to the cloud servers as well as sending
reports and feedback to the end-user. Moreover, subjective
measurements including interviews and Internet-based sur-
veys can be carried out.

The cloud server, as the third tier, includes a high-
performance computing infrastructure. It is responsible for
the sleep quality analysis (e.g., data abstraction and model-
ing). Our semi-supervised machine learning approach is fully
positioned at this tier. Moreover, the cloud server manages,
secures, and stores the data remotely and is capable of pro-
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FIGURE 1: The IoT-based system for the maternal health
monitoring.

viding a control panel for data visualization. The processed
data are shared with the experts (e.g., researchers) for further
analysis.

Setup: For the data collection, we restricted our selection
of sensor nodes to wearable products (e.g., smart wrist-
bands and smartwatches) that are technically applicable and
practically feasible to continuous long-term monitoring [63].
Various studies have shown the validity and reliability of
such wearables in terms of sleep parameters by comparing
different wearables with the gold standard PSG [64]–[66]. At
the beginning of the study, various devices such as Garmin
Vivosmart HR [67], Microsoft Band1 and Fitbit Charge
HR2 were available in the market. We selected the Garmin
Vivosmart HR considering several factors such as the built-in
sensors, battery life, small size, light weight, strap design,
and waterproofness. More details of the feasibility of this
study can be found in [68].

The Garmin Vivosmart HR contains an optical sensor
and an inertial measurement unit (IMU), through which
photoplethysmogram (PPG) [69] and acceleration signals are
collected. In our setup, the participants were requested to
wear the device continuously. We acquired a set of data
every 15 minutes, including heart rate, step counts, and body
movements. The data were utilized for the sleep analysis.

In addition, the pregnant women were asked to frequently
synchronize the wristband’s data with the remote servers via
gateway devices – their smartphones or personal computers
in this setup. For the server, we used a Linode virtual private
server (VPS) [70] with two 2.50GHz Intel Xeon CPU (E5-
2680 v3), 4GB memory, and SSD storage drive. The cloud
server was used to store the data remotely, to perform the
sleep quality analysis methods, and to provide data visual-
ization.

1https://support.microsoft.com/en-us/help/4000514/band-2-get-started
2https://www.fitbit.com/be/chargehr

TABLE 1: Background information of the selected partici-
pants.

Statement Type Value

Age at pregnancy (years) – 25.7± 4.9

Pre-pregnancy BMI – 25.0± 6.4

Quantity of pre-pregnancy
physical activity in week

Once or less 3 women
Sometimes 5 women
Almost daily 12 women

Quality of pre-pregnancy
physical activity in week

Light 8 women
Moderate 11 women
Vigorous 1 woman

Employment Status
At work 13 women
Student 5 women
Unemployed 2 women

Marital Status Married or with partner 17 women
Single 3 women

Educational Status

Below secondary education 4 women
Secondary education 9 women
College 4 women
University 3 women

Smoking Status Pre-pregnancy 7 women
In-pregnancy 5 women

B. PARTICIPANTS AND RECRUITMENT
The monitoring was performed on primiparous pregnant
women attending to one of two selected maternity outpatient
clinics in Southern Finland Between May 2016 and June
2017. Practically, all pregnant women in Finland visit a
public health nurse regularly in a maternal health clinic.
They may also participate in a free of charge ultrasound
examination at the end of first trimester. The participants
of this study were recruited in this examination satisfying
certain criteria:

1) The participant is at least 18 years old.
2) She should expect her first child.
3) The pregnancy is singleton.
4) The gestational age should be less than 15 weeks.
5) She understands Finnish or English.
6) She owns a smartphone, tablet, or personal computer.
Twenty-two pregnant women who met the criteria were

informed after the ultrasound examination. Based on this
initial interest, the procedure and purpose of the study were
provided for the women with phone calls. Twenty women
agreed to participate in the study. In face-to-face meetings,
the researchers collected background information of the par-
ticipants, some of which presented in Table 1. Afterward,
the wearable devices and instructions were delivered to the
participants.

C. ETHICS
The study was conducted in accordance with the code of
ethics of the World Medical Association (Declaration of
Helsinki) for involving human subjects in the experiments.
It was also approved by the joint ethics committee of the
hospital district of Southwest Finland (35/1801/2016) and
Turku University Hospital (TYKS). Moreover, the written
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informed consent was obtained from all participants enrolled.
In addition, the permission to use Garmin Vivosmart R© HR
(Garmin Ltd, Schaffhausen, Switzerland) in this study was
acquired from the manufacturer Garmin Ltd.

IV. SLEEP QUALITY ANALYSIS
In this section, we present our sleep quality analysis approach
tailored for assessment of maternal sleep adaptations during
pregnancy and postpartum. From the collected data, we first
extract several sleep attributes, each of which focuses on a
specific aspect of sleep quality. Changes and trends of these
attributes are explored for each subject throughout the mon-
itoring process. We then propose a personalized sleep model
for each subject to assess sleep quality in a comprehensive
and personalized way. The personalized model is constructed
by feeding the sleep attributes from the early stages of the
monitoring to a machine learning approach.

A. SLEEP ATTRIBUTES
Various objective sleep attributes have been proposed in the
literature for sleep quality assessment at many levels [71].
The selection of these attributes depends on the type of
collected data (i.e., bio-signals and acceleration data) and
subsequently the level of the analysis. For example, actigra-
phy can be used to extract sleep quantity parameters such as
sleep duration and awake after sleep onset [72], [73]. On the
other hand, EEG, EOG, and respiration signals are utilized
to obtain attributes related to the sleep stages (e.g., REM
sleep) [74]. In this study, a wristband equipped with PPG and
IMU sensors is employed to continuously collect different
parameters such as physical activity, body movements, and
heart rates. We exploit these parameters to extract conven-
tional sleep quantity, quality, and schedule attributes [17],
[23], [71], [75]. In this regard, eight objective sleep attributes
are extracted from each sleep event during nighttime to inves-
tigate maternal sleep adaptations. The attributes are outlined
as follows:

• Sleep Duration, also known as Total Sleep Time (TST),
indicates the total time that a user sleeps in a day [76].
It is one of the prevalent parameters in sleep analysis,
widely used as a predictor of illnesses and mortality.
The association between short/long sleep duration and
high risks of different diseases such as cardiovascular
diseases, stroke, and hypertension is demonstrated in
the literature [77], [78]. In this study, the sleep duration
is extracted using sleep information (i.e., start and end
of the sleep) provided by the Garmin Vivosmart HR.
To validate the sleep information, we implemented a
manual cross-check between the sleep information and
other data such as body movements and heart rates. The
sleep information is corrected or discarded if there was
no match between the data. Note that a Listwise dele-
tion method is used to eliminate sleep events including
missing values [79]. We also excluded short naps in the
analysis, due to the limitations of our study.

• Sleep Onset Latency (SOL) refers to the amount of time
that a user spends in bed before her status changes
to the sleep state [80]. In this study, the sleep onset
latency is obtained using the step counts data, and body
movements and orientations. It is the time between the
occurrence of the last step before the sleep event and the
beginning of the sleep event.

• Wake After Sleep Onset (WASO) refers to the amount of
time that a user is awake after the sleep has begun and
before the final awakening [80]. In this study, we use
body movements and orientations data to determine the
WASO during the sleep event. Step counts data are also
used to detect if the user leaves the bed.

• Sleep Fragmentation indicates the number of awaken-
ings that occur after the sleep is initiated and before the
final awakening [81]. In this study, the sleep fragmen-
tation is also obtained using the body movements and
step counts data, by counting the times the user wakes
or leaves the bed during the sleep event.

• Sleep Efficiency is the ratio of the time that the user is
sleeping (i.e., sleep duration) to the total time spent in
bed [4]. In this study, the bedtime is determined using
the step counts data. It is considered as the time between
the occurrence of the last step before the sleep event and
the first step after the sleep event. The sleep efficiency
is calculated as sleep duration divided by bedtime.

• Sleep Depth reflects the ratio of deep sleep duration (i.e.,
motionless sleep) to the amount of time of total sleep
(i.e., sleep duration). Conventionally, the sleep stages
including non-REM (i.e., N1, N2, N3, and N4 stages)
and REM sleep are measured via Polysomnography
tests utilizing EEG, EMG, and EOG signals [82], [83].
However, due to limitations of the data collection in
this long-term monitoring, these sleep stages cannot
be distinguished. In this study, this attribute is defined
according to the body movements data, showing the
amount of motionless sleep in total sleep period, which
likely reflects deep sleep (i.e., N3 and N4 stages).

• Resting Heart Rate refers to the number of heart beats
per minute when the user is at complete rest. As a car-
diovascular risk factor, this attribute was investigated in
studies, tackling associations between elevated resting
heart rate and increased risk of cardiovascular diseases
and mortality [84], [85]. In this study, we define this at-
tribute for each sleep period by calculating the minimum
value of total sleep heart rates.

• Heart Rate Recovery is the time between the start of the
sleep and the time when the resting heart rate is reached.
This attribute can be considered as a readiness score of
the user. In this study, heart rate recovery is obtained
using sleep event and resting heart rate information.

B. PERSONALIZED SLEEP MODEL
We propose a personalized sleep model to investigate sleep
quality adaptations in pregnancy and postpartum. The model
is trained via the user’s sleep data at the beginning of the
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monitoring. Then, the model is used to evaluate the changes
and trends of data from the rest of the monitoring (i.e., test
data). The test data instances are affected by the new life
conditions of pregnancy; and as the model output, a score
is desirable that is indicative of the degree of the sleep
abnormality.

The personalized models for sleep can leverage anomaly
detection methods for identifying such abnormalities and
outliers in a dataset. We delve into state-of-the-art anomaly
detection methods and develop a suitable method for mater-
nal sleep quality assessment. As mentioned in Section II-B,
there is a broad range of methods for anomaly detection.
However, many of them are inappropriate for our study.

In this monitoring scheme, a data instance or sleep event
is multivariate (i.e., multiple attributes), and no contextual
or behavioral data is included. Therefore, we only focus on
Point Anomalies approaches where a data instance can be
selected as anomalous with respect to the rest of the data
instances, but not the context information. Moreover, the
proposed technique should create a model using the “normal"
data. Therefore, our selection is narrowed down to semi-
supervised anomaly detection techniques.

Considering the output produced by the anomaly detec-
tion, binary techniques are not applicable in this study be-
cause they assign a binary label (i.e., normal or abnormal)
to the test instance. Support vector machine-based methods
are examples of binary techniques. Also, rule-based tech-
niques generally require training data to contain labels for
both normal and anomalous classes [55]. Moreover, Nearest
Neighbor techniques (e.g., KNN) use a distance between a
test data instance and its nearest neighbors to determine if
it is anomalous. However, their performance highly depends
on the size of the training data and dimensionality of the
features. Clustering techniques are difficult to apply when
the training data is small because there is a high tendency for
the anomalous class to form a large cluster leading to a high
false positive rate [61]. Statistical techniques present alter-
natives that rely on the assumptions (i.e., statistical models)
made about the data generating distribution. They are also
inappropriate since the assumptions tend not to hold true in
high-dimensional data (like our dataset) and cannot capture
interactions between features [51].

In contrast, artificial neural networks have been success-
fully applied to anomaly detection in various fields [53], [58],
[86]. Replicator Neural Networks (RNN), also known as
Auto-encoders, are the most commonly used form of neural
networks in semi-supervised and unsupervised settings [58],
[86], [87]. They are known for their ability to work well with
high dimensional datasets and to capture linear and nonlinear
interactions in the data. However, these techniques might
show poor performance when the training data size is small.

Bayesian networks-based methods tackle this issue, in-
cluding probability distributions in their models. They pro-
vide an uncertainty estimate along with the output, where it
serves as a confidence bound on the output of the model.
In addition, the model performs efficiently in case of small
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FIGURE 2: Replicator Neural Network with one hidden
layer.

data instances and is robust to over-fitting [88]. This quality
is important in this study, as we have a limited amount
of data samples (i.e., sleep events for each participant) to
train an individualized sleep model. Integrating a Bayesian
method into artificial neural networks was first proposed
by MacKay [89] and Neal [90]. This technique has been
applied in several domains including medical diagnostics and
Internet traffic classification [91].

We exploit the same concept to construct the personalized
sleep model, incorporating a Bayesian approach into a Repli-
cator Neural Networks (RNN).

RNN was first proposed by Hawkins et al. [59] and has
been further developed by Dau et al. [60]. The method
belongs to the class of auto-associative Neural Networks
with compressed internal representations [60]. It captures a
nonlinear representation of the input data and attempts to
reproduce the input data as the output of the network. During
the training process, the weights in the network are optimized
to minimize reconstruction errors of the training data. For a
given data instance (i), the reconstruction error is defined as:

δi =
1

n

n∑
j=1

(xij − oij)2 (1)

where n is the number of features in the data instance, xij is
the input data instance, and oij is the output of the RNN. The
reconstruction error, δi, can be used as the anomaly score for
the given data instance.

Our Bayesian RNN is designed with one hidden layer,
as depicted in Figure 2. Given the training inputs as
X = {x1, ..., xn} and their corresponding outputs as Y =
{y1, ...yn}, we aim to find a function, fw(X) parameterized
by weights w, that is likely to generate the outputs. fw(x)
is defined as fw(X) = g(W2h(X)), where h(X) is the
hidden layer which is h(X) = g(W1X). W1 and W2 are
weights vectors defined over probability distributions; and
the activation function is the rectified linear unit (ReLU) (i.e.,
g(z) = max{0, z}).

It should be noted that Bayesian Neural Networks are
based on Bayes theorem, and in general we need to find
the posterior distribution of the weights. Therefore, we begin
by setting a prior probability distribution on the weights,
p(w), with a Gaussian probability distribution. We, then,
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obtain the likelihood, p(Y |X,w), by updating our beliefs
about the prior, p(w), after seeing the data and deciding
which weights are more likely to produce the outputs. The
posterior distribution p(w|X,Y ) is defined over the space of
the weights:

p(w|X,Y ) =
p(Y |X,w)p(w)

p(Y |X)
(2)

where p(Y |X) is the model evidence. However, the posterior
distribution cannot be computed by Equation 2, as the model
evidence is intractable for most real life problems [88], [92].
Therefore, an approximation method such as Variational
Inference [93] is used to obtain an approximating distribution
as:

q(w) = p(Y |X,w)p(w) (3)

q(w) should be as close as possible to the true posterior dis-
tribution p(w|X,Y ) in Equation 2. Therefore, the Kullback–
Leibler (KL) divergence3 [94] of the two distributions must
be minimized:

KL(q(w)||p(w|X,Y )) =

∫
q(w)log

(
q(w)

p(w|X,Y )

)
dw

(4)
However, Equation 4 still contains the model evidence, so it
is still intractable. This leads to the use of Evidence Lower
Bound (ELBO) as an alternative to the KL divergence. The
ELBO is the negative of the KL divergence up to a logarithm
constant. Therefore, maximizing the ELBO is equivalent
to minimizing the KL divergence which in turn lets us to
approximate the true posterior distribution:

ELBO =

∫
q(w)log p(Y |X,w)dw −KL(q(w)||p(w))

≤ log p(Y |X)
(5)

In our Bayesian RNN, we maximize the objective in Equa-
tion 5. More details can be found in [88], [92], [95].

V. EXPERIMENTAL DETAILS AND RESULTS
Twenty pregnant women were recruited to participate in this
study. The gestational ages of the subjects were 12 ± 2.1
weeks at the beginning of the monitoring. On average, the
subjects were 25.7 years old and had pre-pregnancy body
mass index (BMI) of 25, with different lifestyles and back-
ground characteristics as shown in Table 1.

We excluded 7 participants from our sleep analysis, as
they forgot/refused to use the wristband during sleep, with
the result that their data were insufficient for our study.
Therefore, in the final analysis, 13 pregnant women were
included in our analysis. For these 13 subjects, we extracted
valid sleep data for 172.15 ± 33.29 days per person out of
the total 216.61±14.34 days of the monitoring (79.5%). The

3KL divergence, written as KL(p||q) =
∫
p(x)log

(
log

p(x)
q(x)

)
dx , is a

measure of the distance between probability distributions in this case p and
q. A known property of the KL divergence is that is always greater or equal
to zero

valid sleep data included 76.08 ± 15.17 days of the second
trimester per person, 78.69±12.75 days of the third trimester,
and 17.38± 10.45 days of 1-month postpartum.

Regular phone-interviews (i.e., once or twice a month)
were performed during the study to acquire subjective mea-
surements of their status. According to the self-reports, the
subjects mostly had their daily routines (i.e., regular work
or study) prior to week 30, and began maternity leaves from
weeks 30-34 through the end of our study. In addition, the
participants were requested to report if they encounter sleep
disturbances. On average, three women reported sleep prob-
lems at each interview till week-34, and six women experi-
enced difficulty at sleeping in the final weeks of pregnancy.
The complaints were mostly due to back pain, sickness, and
visiting the toilet during nights.

In the following, we first present the eight objective sleep
attributes measured from the participants during pregnancy
and the postpartum; then, we demonstrate the abnormality
scores calculated using our proposed approach.

A. SLEEP ATTRIBUTES
As discussed in Section IV-A, eight objective sleep attributes
are exploited in this study to investigate the maternal sleep
changes from different perspectives. To visualize the col-
lected data, we calculate the weekly average of the sleep
attributes, where each week contains valid sleep data for at
least 4 days. The weeks with less than 4-days data were
excluded (4.7± 3.6 weeks per person) to reduce the bias.

The variations in attributes for the 13 participants are
illustrated in Figures 3, starting from week 13 to week 40
of pregnancy and week 1 to week 4 of postpartum. The
variations are depicted by minimum, first-quartile, median,
third-quartile, and maximum values of the attributes in each
week. Weeks 39, 40, and 41 were the delivery weeks of 3,
7, and 3 participants, respectively. We excluded the data of
week 41 in the figures, since we had the sleep data of only
one participant.

Sleep duration, a key parameter in sleep quality assess-
ment, gradually decreased during pregnancy. As indicated in
Figure 3a, it was 8 hours and 20 minutes (median value) on
the weeks 13-15, then decreased by approximately 10% and
20% in the mid and end of third trimester, respectively. It
dropped to 5 hours and 50 minutes (median value) on the
first week of postpartum and increased afterward.

On the other hand, the WASO dramatically increased (see
Figure 3b). This parameter was more than 2-times higher at
the third trimester and 3-times higher at the postpartum in
comparison to the second trimester. Therefore, the quality of
sleep diminished at the last stages of pregnancy, and it even
became worse after the labor.

Similarly, sleep fragmentation increased, so there were
more awakening times at the third trimester and postpartum
as illustrated in Figure 3c. The variations of the sleep effi-
ciency were in accordance with the previous attributes, where
it gradually decreased throughout the pregnancy and was at
the lowest after the delivery (see Figure 3d).
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FIGURE 3: The sleep attributes of the 13 participants from week 13 to week 40 of pregnancy and week 1 to week 4
of postpartum. The variations are indicated by minimum, first-quartile, median, third-quartile, and maximum values of the
attributes.

The increase in sleep onset latency was insignificant dur-
ing pregnancy. As indicated in Figure 3e, the parameter
slightly elevated at the third trimester (on average 30.92 min-
utes) in comparison to the second trimester (on average 27.69
minutes). In a similar manner, sleep depth hardly increased
in the pregnancy (see Figure 3f). However, the parameter
jumped to more than 40% after the labor. Accordingly,
motionless sleep (i.e., deep sleep) was relatively elevated in

postpartum, although the sleep duration was less than sleep
duration in the pregnancy period.

The heart-rate-related attributes are depicted in Figures 3g
and 3h. Resting heart rate increased in the second trimester
by more than 10%. However, the parameter was relatively
less in postpartum, where it was, on average, 55 beats per
minute at the postpartum week 4. As indicated in Figure 3h,
heart rate recovery also changed during pregnancy. It de-
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creased in the third trimester (on average 175.78 minutes)
in comparison to the second trimester (on average 201.71
minutes).

B. ABNORMALITY SCORE
Recall that the sleep quality score is computed through an
abnormality score using our Bayesian RNN approach. The
cloud server is responsible for the sleep model construction
(i.e., training phase) and abnormality score calculation (i.e.,
testing phase). To implement the Bayesian RNN, we use the
Lasagne [96] and PyMC3 [97] frameworks in Python. The
input data of the method are the sleep data. Each data instance
includes the eight sleep attributes of a sleep event during
nighttime. The method has one input, one output, and one
hidden layers, each of which has eight units (i.e., number of
the sleep attributes).

Model Construction: As aforementioned, the training data
are the “normal" data in such semi-supervised algorithms.
In this study, the user’s sleep data at the beginning of the
monitoring were considered as the training data. These are
the data from week 13 to week 21, as the most similar data
to the user’s normal condition. It should be noted that, in an
ideal situation, pre-pregnancy sleep data should be selected
as the training dataset (i.e., “normal" data).

The training data were normalized and fed to the model.
Using the PyMC3, the weights were first initialized as normal
probability distributions and then were optimized by max-
imizing the Evidence Lower Bound from the Equation 5.
Therefore, the model was enabled to replicate the input
training data at the output with the minimum error.

Score Calculation: The model, as a compressed representa-
tion of the training dataset, was used to reconstruct the test
data. In this study, the test data were the sleep data from
week 22 to the end of the monitoring. The error of a test
instance reconstruction indicates the abnormality level of the
test instance. Let us take two different examples. 1) The
model replicates the input test data at the output with small
error. This indicates the test instance is close to the training
dataset (i.e., a similar sample was already seen in the training
phase). Consequently, the test instance is “normal". 2) The
model reproduces the input test data at the output with large
error. This shows the test instance is far from the training
dataset (i.e., the instance is new to the model). Therefore, it
is “abnormal".

In this regard, the abnormality level (i.e., abnormality
score) is the distance between the input and reconstructed
output, calculated as:

s =
1

n

n∑
j=1

(xj − oj)2 (6)

where n is the number of sleep attributes which is 8, xj is
the original data instance and oj is the reconstructed data
instance.

In this work, a personalized RNN model was created for
each participant using her own data; and her test data were
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FIGURE 4: The abnormality scores of the 13 participants of
pregnancy weeks 22-40 and postpartum weeks 1-4.

evaluated with the personalized model. The abnormality
scores of the 13 participants are shown in Figure 4, starting
from week 22. The overall median values gradually increased
as the pregnancy progresses. The highest scores during preg-
nancy were for week 35 to the labor. At the postpartum week
1, the score jumped to more than 230% in comparison to
week 40. This means that the worst sleep quality was for
the first week after the labor. Afterward, the scores slightly
decreased in the postpartum although they were considerably
higher than the scores during the pregnancy.

VI. DISCUSSION AND EVALUATION
To the best of our knowledge, this is the first IoT-based
longitudinal study that objectively assesses maternal sleep
quality during pregnancy and postpartum. This IoT-based
monitoring provides a feasible method to assess the quality
of women’s sleep in a challenging transition period from
pregnancy to motherhood. In this section, we first discuss the
observations made by analyzing each attribute individually
and then look into the final sleep abnormality score.

Sleep Attributes: Different objective sleep attributes indi-
cate the quality of sleep diminished during pregnancy and in
postpartum. Compared with the existing studies, this work
represents a higher confidence level on these findings by
performing long-term and fine-grained quantitative measure-
ments and analysis of everyday data of pregnant women.

We found that the sleep duration and sleep efficiency
gradually decreased across pregnancy. Correspondingly, the
WASO and sleep fragmentation increased. These findings
of this continuous wristband monitoring are in concordance
with previous knowledge gained from short-term measure-
ments in a few separate time points. Sleep disturbances
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during pregnancy could be considered unavoidable due to
the hormonal, anatomical, and physiological changes in the
woman’s body. For example, the levels of oxytocin, prolactin,
and cortisol increase and have effects on sleep regulation.
Furthermore, respiratory, musculoskeletal, and cardiovascu-
lar changes, as well as weight gain and bladder compression
by the uterus have impacts on sleep [80].

Moreover, our results indicate there are more changes in
these attributes after the delivery. The sleep duration and
sleep efficiency drop by 21.5% and 9.7%, and the WASO
and sleep fragmentation increase by 3.5 and 4.7 times, in
comparison to the second trimester. These postpartum find-
ings also comply with the previous findings; the changed life
situation is a common reason for such poor sleep quality.
In a previous study by Hughes et al. [98], for example, the
total sleep time in the first 48 hours after birth was less
than 10 hours; however, breastfeeding mothers slept longer
than bottle-feeding mothers. Sleep is often compromised
in the postpartum period during the first months because
of infants’ sleep-wake patterns and various needs leading
multiple night-time awakenings. Total sleep time appears to
be the lowest one month after birth, but it can remain as
low still at two months postpartum [39], [99]. In previous
studies, these attributes were measured via subjective self-
report questionnaires or short-term objective actigraphy [5],
[16], [31], [100].

Based on the data in this study, the sleep onset latency
did not change significantly during pregnancy; however, the
difficulties of falling asleep have been reported to increase
as pregnancy progresses [101]. In [101], about one-fourth
of pregnant women have suffered from daytime sleepiness
which might be an indicator of the insufficient sleep depth.
Subjectively rated sleepiness symptoms remained the same
during pregnancy [101] as did the sleep depth in this study.
Interestingly, the sleep depth increased more than 40% after
the delivery. This might be explained with the sleep depth
accumulated during pregnancy. Findings related to the heart
rate were supported by the earlier knowledge [102]; resting
heart rate increased during pregnancy but decreased again
during the first month postpartum, and heart rate recovery
decreased toward the end of pregnancy.

Abnormality Score: Each sleep attribute represents the ma-
ternal sleep quality from a single perspective. We tackled this
issue by using an abnormality score which is the fusion of the
sleep attributes. It provides a better understanding of changes
in maternal individual sleep quality, tailoring sleep data of
early pregnancy to evaluate sleep data of late pregnancy and
postpartum. In an ideal situation, changes would be evaluated
against pre-conception sleep quality [103]. Moreover, it can
be used to achieve personalized healthcare. The proposed
score enables personalized decision-making through objec-
tive sleep quality assessment, where the intensity of the score
corresponds to its distance from the user’s normal condition
(i.e., user’s model). This personalization is important in such
health-related applications, as the normal health condition is
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FIGURE 5: The abnormality scores of two participants, using
the baseline and proposed methods.

specific for each individual and is not easy to be generally
defined. For example, average resting heart rates of two
different persons could be 50 and 60 beats/min, both of which
are normal values according to their individual conditions.

We evaluate the obtained abnormality scores, comparing
the proposed sleep model with a baseline method. Recall that
as a semi-supervised approach is used in this work, the train-
ing data are label as “normal" and the test data are unlabeled.
To evaluate the model, we rely on the general hypothesis
behind the model, which should produce a higher score in
the case of anomalous data (i.e., differentiate “normal" and
“abnormal" test instances).

In this regard, we consider a simple aggregate method
as a baseline for the performance comparison. The baseline
method determines sleep quality scores using overall popu-
lation values in normal conditions. We use the data from the
beginning of the monitoring (i.e., normal data) representing
the most probable sleep attributes of normal conditions in
our study. Eventually, the baseline score of each sleep event
is the sum of distances between the sleep attributes and
their corresponding normal population means in units of the
standard deviations.

We select two participants (i.e., P1 and P2) with different
conditions to implement the comparison between the pro-
posed method and the baseline. P1 experienced substantial
changes in her sleep although P2 had relatively less sleep
changes in pregnancy. Table 2 shows average values of some
sleep attributes of P1 and P2 in their normal conditions (i.e.,
beginning of the monitoring) and at the end of the pregnancy.
The table also indicates attributes changes (ratio), comparing
data at the end of pregnancy to population data and to her own
data. As indicated, the ratio of P1 attributes to her own data
is higher than the ratio to the population data. On the other
hand, the ratio of P2 attributes to her own data is relatively

VOLUME 8, 2019 11



TABLE 2: P1 and P2 attributes and the ratio of the attributes
at the end of pregnancy to her own data and population
values.

Attributes #
Mid of
second
trimester

End of
third
trimester

Ratio to
popul.
data

Ratio to
her own
data

Sleep fragmen-
tation (times)

P1 0.5 1.53 1.62 3.06
P2 1.39 2.29 2.43 1.64

WASO (min-
utes)

P1 15.3 37.32 1.48 2.43
P2 34.39 75.83 3.02 2.2

Sleep dura-
tion (minutes)

P1 389.34 341.25 0.71 0.87
P2 480.04 456.33 0.95 0.95

Resting heart
rate (beats/min)

P1 53.38 59.23 0.96 1.2
P2 65.61 71.17 1.16 1.08

less.
As shown in Figure 5a, the baseline score is unable to ac-

curately distinguish between P1 and P2. This is because P1’s
sleep parameters, despite the substantial changes, were close
to the population values. In contrast to the baseline method,
the sleep changes are clearly visible using the abnormality
score obtained from the proposed model (see Figure 5b). This
enables the provision of tailored individualized and effective
care, where we can identify those who need the care most and
optimize resource allocation.

A. LIMITATIONS AND FUTURE DIRECTIONS
The proposed IoT-based system is a proof-of-concept for
1) long-term monitoring of maternal daily sleep 2) effec-
tive care for maternal sleep disturbances using personalized
decision-making. One of the limitations of this study is that
the study sample is small. Other studies investigate the as-
sociations between subjective sleep measurements and other
pregnancy-related parameters and complications on large
study samples. For example, Okun et al. [104] conduct a
study on 166 pregnant women via self-report questionnaires
and indicate that poor sleep quality is correlated with an
increased risk of preterm birth. Another study is performed
on 457 pregnant women to tackle the association between
sleep quality and type of delivery and length of the labor [22].
Unfortunately, we are unable to statistically investigate such
associations in our data since our sample size is smaller.
Future directions of this study are to perform objective lon-
gitudinal studies on a larger population focusing on such
correlations.

Another limitation of our monitoring study is linked to
the data collection. We were bounded to one wristband that
monitored heart rate, step counts, and body movements.
Future work will consider multimodal and multisensor data
collection and integration with more advanced sensor nodes,
enabling the capture of additional health/sleep attributes. For
instance, PPG as a non-invasive and convenient technique
can play a significant role in such monitoring systems [69].
Finger-based and wrist-based PPG sensors can be leveraged
in this regard to continuously acquire different health pa-
rameters such as heart rate variability and respiration rate.

Moreover, strap monitors can be employed to record EMG
signals for possible abdominal contractions extraction. How-
ever, to enhance the feasibility of long-term monitoring, there
needs to be a balance between the number of wearables and
their continuous use, as a high number of wearable devices
could be impractical or inapplicable for sustained long-term
monitoring. For instance, in our study, despite using only one
wristband for the data collection, we were required to exclude
the sleep data of 7 participants out of 20 due to the high
volume of missing data. The main reasons were forgetfulness
and refusal of wearing the wristband during sleep.

Finally, it is worth noting that the proposed model can be
extended to contextual anomalies methods, considering the
contextual information. These longitudinal studies demand
remote and in-home monitoring in which the participants
might be involved in different conditions and environments.
Therefore, context information including personal lifelog-
ging data, ambient data, and medication reports can improve
the accuracy of the personalized decision-making.

VII. CONCLUSION
Maternal sleep quality alters during the pregnancy and post-
partum due to the adaptations of the maternal body. Such
variations in sleep should be closely monitored as poor
sleep quality might lead to various pregnancy complica-
tions. Conventional studies are insufficient for this issue as
they are limited to restricted data collection approaches. In
this paper, we conducted an objective longitudinal study to
thoroughly investigate maternal sleep adaptations in preg-
nancy and postpartum. We introduced an IoT-based system
to remotely monitor pregnant women 24/7. Several sleep
attributes were extracted to observe changes in maternal sleep
patterns. Moreover, we proposed a Bayesian RNN approach
to construct a personalized sleep model for each individual
using her own data. The sleep model was utilized to deliver
an abnormality score, which indicated the degree of maternal
sleep quality adaptations. In total, we collected 7 months of
data from 20 pregnant women; however, we only included
172.15 ± 33.29 days of valid sleep data per person from 13
pregnant women in our sleep analysis. For each subject, the
sleep model was created using the data from the beginning of
the monitoring, and the model was tested on the rest of the
pregnancy and postpartum data. The obtained scores showed
that sleep abnormalities increased during the pregnancy (2.87
times) and after the delivery (5.62 times) in comparison to
the mid of the second trimester. This work indicated sleep
quality decreased in pregnancy and postpartum with a high
confidence level, leveraging fine-grained quantitative mea-
surements and analysis on everyday data of pregnant women.
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